Posts Tagged ‘air resistance’

h1

WINTER OLYMPICS: How ski Jumpers Use Math to Increase their Jump Length

February 16, 2018

While air resistance has little impact on aerial skiers it is a significant factor used by ski jumpers to increase their jump distance.

The significant maths for ski jumpers is therefore X-section area.

Here is the jump at Pyeong Chang, 2018. Just imagine going down that at top speed!!!

              A ski jumper is set to jump in Pyeongchang.

                   Casey Larson USA Pyeong chang 2018

Ski jumpers increase their speed going down the ramp by reducing their X-section area:

Lindsey Van, USA, practicing in a wind tunnel

           Lindsey Van, USA, practicing in a wind tunnel

Once they leave the ramp, ski jumpers try to increase their X-section area like Ski Divers to slow their vertical fall. But they have to land safely so they keep their skis at a minimum  angle.

Abby Hughes, USA, practicing in a wind tunnel.

Abby Hughes, USA, practicing in a wind tunnel.

Abby Hughes, USA, in the air

          Abby Hughes, USA, in the air

Here are the X-section areas for Abby Hughes*:

Abby Hughes X-section

Here is the formula for Air Resistance of Drag:

D = ½CApv2

Where C is the drag coefficient or constant, which depends on the shape and spin of an object. It is found by testing the object in a wind tunnel.

A is the X-section Area,

p is the density of the air and

v the velocity of the object.

More here.

As Abby Hughes has tripled here X-section area in the air she will have tripled the vertical drag during her jump. This will slow here decent.

*Mathspig calculated the X-section area by the old fashioned method of counting squares and rounding off the final count. Mathspig sized the two pics of Abby Huges so that her head was the same size in both pictures.

Advertisements
h1

3. How maths rules ski jumping

January 23, 2014

While air resistance has little impact on aerial skiers (above) it is a significant factor used by ski jumpers to increase their jump distance.

The significant maths for ski jumpers is therefore X-section area.

Here is the jump at Sochi. Just imagine going down that at top speed!!!

Sochi Ski Jump 2014 by blogger Melbourneer

Sochi Ski Jump 2014 by blogger Melbourneer

Ski jumpers increase their speed going down the ramp by reducing their X-section area:

Lindsey Van, USA, practicing in a wind tunnel

Lindsey Van, USA, practicing in a wind tunnel

Once they leave the ramp, ski jumpers try to increase their X-section area like Ski Divers to slow their vertical fall. But they have to land safely so they keep their skis at a minimum  angle.

Abby Hughes going down jump:

Abby Hughes, USA, practicing in a wind tunnel.

Abby Hughes, USA, practicing in a wind tunnel.

Abby Hughes, USA, in the air

Abby Hughes, USA, in the air

Here are the X-section areas for Abby Hughes*:

Abby Hughes X-section

Here is the formula for Air Resistance of Drag:

D = ½CApv2

Where C is the drag coefficient or constant, which depends on the shape and spin of an object. It is found by testing the object in a wind tunnel.

A is the X-section Area,

p is the density of the air and

v the velocity of the object.

More here.

As Abby Hughes has tripled here X-section area in the air she will

have tripled the vertical drag during her jump. This will slow here decent.

*Mathspig calculated the X-section area by the old fashioned method of counting squares and rounding off the final count. Mathspig sized the two pics of Abby Huges so that her head was the same size in both pictures.